3.147 \(\int \frac {x^3 (a+b \sinh ^{-1}(c x))}{\sqrt {d+c^2 d x^2}} \, dx\)

Optimal. Leaf size=142 \[ \frac {x^2 \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^2 d}-\frac {2 \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^4 d}-\frac {b x^3 \sqrt {c^2 x^2+1}}{9 c \sqrt {c^2 d x^2+d}}+\frac {2 b x \sqrt {c^2 x^2+1}}{3 c^3 \sqrt {c^2 d x^2+d}} \]

[Out]

2/3*b*x*(c^2*x^2+1)^(1/2)/c^3/(c^2*d*x^2+d)^(1/2)-1/9*b*x^3*(c^2*x^2+1)^(1/2)/c/(c^2*d*x^2+d)^(1/2)-2/3*(a+b*a
rcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/c^4/d+1/3*x^2*(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/c^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {5758, 5717, 8, 30} \[ \frac {x^2 \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^2 d}-\frac {2 \sqrt {c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^4 d}-\frac {b x^3 \sqrt {c^2 x^2+1}}{9 c \sqrt {c^2 d x^2+d}}+\frac {2 b x \sqrt {c^2 x^2+1}}{3 c^3 \sqrt {c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*(a + b*ArcSinh[c*x]))/Sqrt[d + c^2*d*x^2],x]

[Out]

(2*b*x*Sqrt[1 + c^2*x^2])/(3*c^3*Sqrt[d + c^2*d*x^2]) - (b*x^3*Sqrt[1 + c^2*x^2])/(9*c*Sqrt[d + c^2*d*x^2]) -
(2*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/(3*c^4*d) + (x^2*Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/(3*c^2
*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5717

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)
^(p + 1)*(a + b*ArcSinh[c*x])^n)/(2*e*(p + 1)), x] - Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p +
 1)*(1 + c^2*x^2)^FracPart[p]), Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a,
b, c, d, e, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rule 5758

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n)/(e*m), x] + (-Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)
^(m - 2)*(a + b*ArcSinh[c*x])^n)/Sqrt[d + e*x^2], x], x] - Dist[(b*f*n*Sqrt[1 + c^2*x^2])/(c*m*Sqrt[d + e*x^2]
), Int[(f*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] &&
 GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {x^3 \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {d+c^2 d x^2}} \, dx &=\frac {x^2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^2 d}-\frac {2 \int \frac {x \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt {d+c^2 d x^2}} \, dx}{3 c^2}-\frac {\left (b \sqrt {1+c^2 x^2}\right ) \int x^2 \, dx}{3 c \sqrt {d+c^2 d x^2}}\\ &=-\frac {b x^3 \sqrt {1+c^2 x^2}}{9 c \sqrt {d+c^2 d x^2}}-\frac {2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^4 d}+\frac {x^2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^2 d}+\frac {\left (2 b \sqrt {1+c^2 x^2}\right ) \int 1 \, dx}{3 c^3 \sqrt {d+c^2 d x^2}}\\ &=\frac {2 b x \sqrt {1+c^2 x^2}}{3 c^3 \sqrt {d+c^2 d x^2}}-\frac {b x^3 \sqrt {1+c^2 x^2}}{9 c \sqrt {d+c^2 d x^2}}-\frac {2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^4 d}+\frac {x^2 \sqrt {d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{3 c^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 93, normalized size = 0.65 \[ \frac {3 a \left (c^4 x^4-c^2 x^2-2\right )+b c x \sqrt {c^2 x^2+1} \left (6-c^2 x^2\right )+3 b \left (c^4 x^4-c^2 x^2-2\right ) \sinh ^{-1}(c x)}{9 c^4 \sqrt {c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(a + b*ArcSinh[c*x]))/Sqrt[d + c^2*d*x^2],x]

[Out]

(b*c*x*(6 - c^2*x^2)*Sqrt[1 + c^2*x^2] + 3*a*(-2 - c^2*x^2 + c^4*x^4) + 3*b*(-2 - c^2*x^2 + c^4*x^4)*ArcSinh[c
*x])/(9*c^4*Sqrt[d + c^2*d*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 132, normalized size = 0.93 \[ \frac {3 \, {\left (b c^{4} x^{4} - b c^{2} x^{2} - 2 \, b\right )} \sqrt {c^{2} d x^{2} + d} \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right ) + {\left (3 \, a c^{4} x^{4} - 3 \, a c^{2} x^{2} - {\left (b c^{3} x^{3} - 6 \, b c x\right )} \sqrt {c^{2} x^{2} + 1} - 6 \, a\right )} \sqrt {c^{2} d x^{2} + d}}{9 \, {\left (c^{6} d x^{2} + c^{4} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

1/9*(3*(b*c^4*x^4 - b*c^2*x^2 - 2*b)*sqrt(c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 + 1)) + (3*a*c^4*x^4 - 3*a*c^2
*x^2 - (b*c^3*x^3 - 6*b*c*x)*sqrt(c^2*x^2 + 1) - 6*a)*sqrt(c^2*d*x^2 + d))/(c^6*d*x^2 + c^4*d)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.23, size = 358, normalized size = 2.52 \[ a \left (\frac {x^{2} \sqrt {c^{2} d \,x^{2}+d}}{3 c^{2} d}-\frac {2 \sqrt {c^{2} d \,x^{2}+d}}{3 d \,c^{4}}\right )+b \left (\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (4 c^{4} x^{4}+4 c^{3} x^{3} \sqrt {c^{2} x^{2}+1}+5 c^{2} x^{2}+3 c x \sqrt {c^{2} x^{2}+1}+1\right ) \left (-1+3 \arcsinh \left (c x \right )\right )}{72 c^{4} d \left (c^{2} x^{2}+1\right )}-\frac {3 \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}+c x \sqrt {c^{2} x^{2}+1}+1\right ) \left (-1+\arcsinh \left (c x \right )\right )}{8 c^{4} d \left (c^{2} x^{2}+1\right )}-\frac {3 \sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}-c x \sqrt {c^{2} x^{2}+1}+1\right ) \left (1+\arcsinh \left (c x \right )\right )}{8 c^{4} d \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (4 c^{4} x^{4}-4 c^{3} x^{3} \sqrt {c^{2} x^{2}+1}+5 c^{2} x^{2}-3 c x \sqrt {c^{2} x^{2}+1}+1\right ) \left (1+3 \arcsinh \left (c x \right )\right )}{72 c^{4} d \left (c^{2} x^{2}+1\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x)

[Out]

a*(1/3*x^2/c^2/d*(c^2*d*x^2+d)^(1/2)-2/3/d/c^4*(c^2*d*x^2+d)^(1/2))+b*(1/72*(d*(c^2*x^2+1))^(1/2)*(4*c^4*x^4+4
*c^3*x^3*(c^2*x^2+1)^(1/2)+5*c^2*x^2+3*c*x*(c^2*x^2+1)^(1/2)+1)*(-1+3*arcsinh(c*x))/c^4/d/(c^2*x^2+1)-3/8*(d*(
c^2*x^2+1))^(1/2)*(c^2*x^2+c*x*(c^2*x^2+1)^(1/2)+1)*(-1+arcsinh(c*x))/c^4/d/(c^2*x^2+1)-3/8*(d*(c^2*x^2+1))^(1
/2)*(c^2*x^2-c*x*(c^2*x^2+1)^(1/2)+1)*(1+arcsinh(c*x))/c^4/d/(c^2*x^2+1)+1/72*(d*(c^2*x^2+1))^(1/2)*(4*c^4*x^4
-4*c^3*x^3*(c^2*x^2+1)^(1/2)+5*c^2*x^2-3*c*x*(c^2*x^2+1)^(1/2)+1)*(1+3*arcsinh(c*x))/c^4/d/(c^2*x^2+1))

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 117, normalized size = 0.82 \[ \frac {1}{3} \, b {\left (\frac {\sqrt {c^{2} d x^{2} + d} x^{2}}{c^{2} d} - \frac {2 \, \sqrt {c^{2} d x^{2} + d}}{c^{4} d}\right )} \operatorname {arsinh}\left (c x\right ) + \frac {1}{3} \, a {\left (\frac {\sqrt {c^{2} d x^{2} + d} x^{2}}{c^{2} d} - \frac {2 \, \sqrt {c^{2} d x^{2} + d}}{c^{4} d}\right )} - \frac {{\left (c^{2} x^{3} - 6 \, x\right )} b}{9 \, c^{3} \sqrt {d}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

1/3*b*(sqrt(c^2*d*x^2 + d)*x^2/(c^2*d) - 2*sqrt(c^2*d*x^2 + d)/(c^4*d))*arcsinh(c*x) + 1/3*a*(sqrt(c^2*d*x^2 +
 d)*x^2/(c^2*d) - 2*sqrt(c^2*d*x^2 + d)/(c^4*d)) - 1/9*(c^2*x^3 - 6*x)*b/(c^3*sqrt(d))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^3\,\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}{\sqrt {d\,c^2\,x^2+d}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(a + b*asinh(c*x)))/(d + c^2*d*x^2)^(1/2),x)

[Out]

int((x^3*(a + b*asinh(c*x)))/(d + c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )}{\sqrt {d \left (c^{2} x^{2} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*asinh(c*x))/(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x**3*(a + b*asinh(c*x))/sqrt(d*(c**2*x**2 + 1)), x)

________________________________________________________________________________________